

Copyright © Samsung Electronics Co., Ltd. 2008

Secure Xen on ARM
User's Guide

Secure Xen on ARM User's Guide

Copyright © Samsung Electronics Co., Ltd. 2008 II

Revision History

Version Date Revised contents

1.0 2008-06-11 Initial revision

Document Information
- Pages: 19 pages

Contact Information & Copyright
Software Lab.
Samsung Electronics Co., Ltd.
San 14-1, Nongseo-Dong, Giheung-Gu, Yongin-Si, Gyeonggi-Do
Korea 449-712

Contact: Sang-bum Suh sbuk.suh@samsung.com, Minsung Jang minsung.jang@samsung.com

Copyright © 2008 Samsung Electronics Co, Ltd. All Rights Reserved.

Though every care has been taken to ensure the accuracy of this document, Samsung
Electronics Co, Ltd. cannot accept responsibility for any errors or omissions or for any loss
occurred to any person, whether legal or natural, from acting, or refraining from action, as a
result of the information contained herein. Information in this document is subject to change
at any time without obligation to notify any person of such changes.

Samsung Electronics Co, Ltd. may have patents or patent pending applications, trademarks
copyrights or other intellectual property rights covering subject matter in this document.
The furnishing of this document does not give the recipient or reader any license to these
patents, trademarks copyrights or other intellectual property rights.

No part of this document may be communicated, distributed, reproduced or transmitted in
any form or by any means, electronic or mechanical or otherwise, for any purpose, without
the prior written permission of Samsung Electronics Co, Ltd.

The document is subject to revision without further notice.

All brand names and product names mentioned in this document are trademarks or registered
trademarks of their respective owners.

Secure Xen on ARM User's Guide

Copyright © Samsung Electronics Co., Ltd. 2008 III

Table of Contents

1. Introduction ...１

1.1. Overview ..１

1.2. Hardware Support ...１

2. Building Environment ..２

3. Installation Procedure ...３

3.1. Host PC Environment Setup ..３

3.1.1. Cross Toolchain ...３

3.1.2. Tftp Server ..３

3.1.3. Minicom ..３

3.2. Domains Configuration..４

3.2.1. Configuring Memory Partition..４

3.3. Compilation ...５

3.3.1. How to compile Secure Xen on ARM ..５

3.3.2. How to compile mini-os ...５

3.4. Running Secure Xen on ARM and two mini-os...６

4. How to Enable Security Features ..９

4.1. Why modify boot loader for Secure Xen on ARM? ..９

4.1.1. Secure boot ...９

4.1.2. Security information transfer ..９

4.2. Detailed description about boot loader operation.......................................９

4.2.1. Initialization...９
4.2.2. To load Secure Xen on ARM and dom0 binary images to predefined memory

locations ...１０

4.2.3. To verify Secure Xen on ARM binary image.......................................１０

4.2.4. To call the Secure Xen on ARM binary image with a parameter１０

4.3. Data structure to be transferred from boot loader to Secure Xen on ARM.......１０

4.4. Description about cryptographic library ..１１

4.4.1. Overview..１１

4.4.2. APIs for cryptographic library...１１

Appendix ..１５

A.1. New hypercalls for Secure Xen on ARM ...１５

A.2. Credit ...１５

Secure Xen on ARM User's Guide

Copyright © Samsung Electronics Co., Ltd. 2008 IV

Overview

Purpose

This document describes the procedure of setting up a development environment for Secure
Xen on ARM solution, building the solution, deploying it to a real target, and booting it for
creating a VM.

Terminology & Acronyms

Term Description

VMM Virtual Machine Monitor

VM Virtual Machine

Dom0 The privileged domain constructed by Xen on ARM at initial start-up
time.

Dom1 An unprivileged domain constructed by dom0.

HID Human Interface Device

References

1. ARM Ltd., ARM926EJ-S Technical Reference Manual, r0p4/r0p5

2. Freescale Semiconduct, “i.MX21 Application Processor Reference Manual,” Rev. 2, 2005

3. Xen Interface Manual

http://www.cl.cam.ac.uk/Research/SRG/netos/xen/readmes/interface/interface.html

4. “Secure Architecture and Implemation of Xen on ARM for Mobile Devices”, Sang-bum Suh,
presented at Xen Summit Spring 2007, IBM TJ Watson, Arpil 2007.

http://www.xen.org/xensummit_4/Secure_Xen_ARM_xen-summit-04_07_Suh.pdf

5. “Xen on ARM: System Virtualization Using Xen Hypervisor for ARM-Based Secure Mobile
Phones”, Joo-Young Hwang, Sang-bum Suh, Sung Kwan Heo, Chan-Ju Park, Jae-Min Ryu,
Seong-Yeol Park, Chul-Ryun Kim, In Proceedings of the 5th Annual IEEE Consumer
Communications & Networking Conference, USA, January 2008.

6. “A Multi-Layer Mandatory Access Control Mechanism for Mobile Devices Based on
Virtualization,” Sung-Min Lee, Sang-bum Suh, Bokdeuk Jeong, Sangdok Mo, In
Proceedings of the 5th Annual IEEE Consumer Communications & Networking Conference,
USA, January 2008.

Secure Xen on ARM User's Guide

Copyright © Samsung Electronics Co., Ltd. 2008 １

1. Introduction

1.1. Overview

Xen is an open source VMM originated as a research project at the University of Cambridge.
Its first version, 1.0, came out in 2003 and now the version has reached to 3.2. The
virtualization technique adopted by Xen is para-virtualization which requires operating
system modification.

Secure Xen on ARM is an ARM port of the x86 version of Xen-3.0.2-2 plus security features in
Xen. It allows the simultaneous execution of multiple operating systems and their legacy
application software stacks on a single ARM core-based system-on-chip. Each guest OS
instance runs in their own OS partition called “domain” and the OS partitions are securely
isolated from each other.

The original Xen solution comes with many user-land utilities. We have ported most core
component such as xend, xenstore, xm and xenconsole.

Notes: The current version of Secure Xen on ARM only supports “static partitioning” of
system memory, which means that the number of guest domains and the amount of memory
allocated to the guest domains is fixed at compile time. You have to configure system
memory partitioning properly before building Secure Xen on ARM.
The shadow page table and the writable page table are not included in this release but we
are working on them so hopefully they will be enabled in our next release.

1.2. Hardware Support

The current release of the Secure Xen on ARM supports and tested on the following platform.

� MX21ADS evaluation board shipped from Freescale Semiconductor (DBMX9328).

Secure Xen on ARM User's Guide

Copyright © Samsung Electronics Co., Ltd. 2008 ２

2. Building Environment

We tested Secure Xen on ARM are successfully built under the system environment:

� Compiler: GCC-3.4 or higher
� OS: Linux Fedora Core 6

Secure Xen on ARM User's Guide

Copyright © Samsung Electronics Co., Ltd. 2008 ３

3. Installation Procedure

3.1. Host PC Environment Setup

3.1.1. Cross Toolchain

The gcc 3.4.4 and glibc 2.3.5 is used for cross-compilation. You can download it at the links.
http://www.ertos.nicta.com.au/downloads/tools/arm-linux-3.4.4.tar.gz
http://www.ertos.nicta.com.au/downloads/tools/arm-linux-3.4.4.tar.bz2

3.1.2. Tftp Server

You can download binary files from host PC to target by using tftp. If tftp server is not
configured in the host PC, install and setup a tftp server first. Installing tftp server and
enabling tftp service can be different depending on your host pc environment.

3.1.3. Minicom

You can access to the target by using a terminal program. ‘Minicom’ is one of the popular
terminal programs running in Linux PC. Here we’ll explain about serial port set-up in Minicom.
You can also use other terminal programs such as ‘HyperTerminal’ in Windows PC.

1. Execute a minicom on setting mode.

minicom -s

2. Select ‘Serial port setup’ menu and set up the parameters as in Figure 3-1.

Figure 3-1 Minicom Configuration

Secure Xen on ARM User's Guide

Copyright © Samsung Electronics Co., Ltd. 2008 ４

3.2. Domains Configuration

3.2.1. Configuring Memory Partition

On the current release of Secure Xen on ARM, the number of domains and the amount of
memory allocated to the guest domain is fixed. You have to configure system memory
partition properly before building Secure Xen on ARM.

1. Go to the Secure Xen on ARM source directory. $(XEN_ROOT) is root directory of the

Secure Xen on ARM.

 # cd $(XEN_ROOT)

2. The all works are done with menuconfig script. We have assigned the default values as
illustrated in the Figure 3-2.

 # make menuconfig

General Setup --->
System Type --->
Customize Memory Map --->
 (0xFF000000) Hypervisor virtual address
 Domain Memory Size --->
 (0x02000000) domain0 memory size (including xen memory size :
2MB)
 (0x01000000) domain1 memory size (NEW)
 (0x01000000) domain2 memory size (NEW)
 (0x00000000) domain3 memory size (NEW)
 Image Max Size --->
 (0x00400000) domain0 image max size (NEW)
 (0x00400000) domain1 image max size (NEW)
 (0x00400000) domain2 image max size (NEW)
 (0x00400000) domain3 image max size (NEW)
 Ram Disk Size --->
 (0x00400000) domain0 ramdisk size (NEW)
 (0x00400000) domain1 ramdisk size (NEW)
 (0x00400000) domain2 ramdisk size (NEW)
 (0x00400000) domain3 ramdisk size (NEW)
Security Support --->
Debugging and profiling Support --->

Figure 3-2 Memory Partitioning

The meaning of each menu entry displayed in the Figure 3-2 is as followings.

� The Domain Memory Size means the amount of memory allocated to the guest

domain.
� The Image Max Size means the maximum size of guest kernel image to be loaded.

The guest kernel image should be less than the value.

The Ram Disk Size is mainly used for Ram disk. This value may be neglected if you do not use
the ramdisk.

Secure Xen on ARM User's Guide

Copyright © Samsung Electronics Co., Ltd. 2008 ５

3.3. Compilation

3.3.1. How to compile Secure Xen on ARM

1. Go to the Secure Xen on ARM source directory. $(XEN_ROOT) is root directory of the
Secure Xen on ARM.
 # cd $(XEN_ROOT)

2. Lets get on with the task of configuring the Secure Xen on ARM. When you do the make
menuconfig of your Secure Xen on ARM configuration, don't forget to check the system type
that is suitable for your target board.

 # make menuconfig

General Setup --->
 [] optimize for size
 [] Use AEM EABI to compile the Secure Xen on ARM

System Type --->
 Select target platform (Freescale i.MX21ADS board) --->
 () Samsung Fiore board
 (X) Freescale i.MX21ADS board
 () Texas Instrument OMAP5912 OSK board

Customize Memory Map --->
 (0xFF000000) Hypervisor virtual address

Security Support --->
 [] Security support

Debugging and profiling Support --->
 [] Debugging and Profiling Support

Figure 3-3 Secure Xen on ARM Configuration

3. Finally compile the Secure Xen on ARM by executing ‘make’ command.

make

4. Then xen-bin file is created in $(XEN_ROOT)/xen, and copy to root directory of tftp server.

 # cp $(XEN_ROOT)/xen/xen-bin $(TFTP_ROOT)

3.3.2. How to compile mini-os

1. Go to the mini-os source directory. The mini-os source directory is
$(XEN_ROOT)/extras/mini-os-arm.

 # cd $(XEN_ROOT)/extras/mini-os-arm

2. Finally compile the mini-os by executing ‘make’ command.

 # make

Secure Xen on ARM User's Guide

Copyright © Samsung Electronics Co., Ltd. 2008 ６

3. Then mini-os.elf file is created in $(XEN_ROOT)/tools/minios, and copy to root directory of
tftp server.

 # cp $(XEN_ROOT)/extras/mini-os-arm/mini-os.elf $(TFTP_ROOT)

3.4. Running Secure Xen on ARM and two mini-os

We assume that u-boot is installed in the i.mx21 target board.

1. Turn on the target board, then boot the target and enter interactive command line mode
of u-boot.

2. Download Xen and mini-os image.
 u-boot> tftp 0xc0008000 xen-bin
 u-boot> tftp 0xc1c00000 mini-os.elf
 u-boot> tftp 0xc2c00000 mini-os.elf

3. Execute Secure Xen on ARM and mini-os.

u-boot> go 0xc0008000

4. Then you can see running the two mini-os on Secure Xen on ARM as in Figure 3-4.

Samsung:mx21ads> tftp 0xc0008000 xen-bin
TFTP from server 192.168.161.1; our IP address is 192.168.161.2
Filename 'xen-bin'.
Load address: 0xc0008000
Loading: ###
done
Bytes transferred = 206388 (32634 hex)
Samsung:mx21ads> tftp 0xc1c00000 mini-os.elf
TFTP from server 192.168.161.1; our IP address is 192.168.161.2
Filename 'mini-os.elf'.
Load address: 0xc1c00000
Loading: ################################
done
Bytes transferred = 161538 (27702 hex)
Samsung:mx21ads> tftp 0xc2c00000 mini-os.elf
TFTP from server 192.168.161.1; our IP address is 192.168.161.2
Filename 'mini-os.elf'.
Load address: 0xc3c00000
Loading: ################################
done
Bytes transferred = 161538 (27702 hex)
Samsung:mx21ads> go 0xc0008000
Starting
 [XEN]
Starting Xen/ARM
Copyright (C) 2007 Samsung Electronics Co, Ltd. All Rights Reserved.
[XEN] Using scheduler: Borrowed Virtual Time (bvt)
[XEN] *** LOADING DOMAIN : 0 ***
[XEN] Physical Memory Arrangement: c0200000->c2000000
[XEN] VIRTUAL MEMORY ARRANGEMENT:
[XEN] Loaded kernel: c0008000->c00249f4
[XEN] Init. ramdisk: c0025000->c0025000
[XEN] Phys-Mach map: c0025000->c002c800
[XEN] Start info: c002d000->c002e000

Secure Xen on ARM User's Guide

Copyright © Samsung Electronics Co., Ltd. 2008 ７

[XEN] Page tables: c0030000->c0046000
[XEN] Boot stack: c0046000->c0047000
[XEN] TOTAL: c0000000->c1e00000
[XEN] ENTRY ADDRESS: c0008000
[XEN] [TODO] dma channel access permission, in construct_dom0()
[XEN] [dom0] Bootstrapping
[dom0] Xen Minimal OS!
[dom0] Magic : xen-3.0-arm_32
[dom0] Total Pages allocated to this domain : 7680
[dom0] MACHINE address of shared info struct : 0xc00f1000
[dom0] VIRTUAL address of page directory : 0xc0030000
[dom0] Number of bootstrap p.t. frames : 22
[dom0] VIRTUAL address of page-frame list : 0xc0025000
[dom0] VIRTUAL address of pre-loaded module : 0x0
[dom0] Size (bytes) of pre-loaded modules : 0
[dom0] min mfn(min_page in xen) : 786432
[dom0] Command-Linux Address : 0xc002d054
[dom0] Command-Line String :
[dom0] flags : 0x3
[dom0] sizeo fo pte_t = 4
[dom0] Shared info Offset = 0x0
[dom0] Shared Info : 0xc0009000
[dom0] MM: Init
[dom0] MM: Initializing page allocator for memory c0049000(49000)-c1e00000(1e00)
[dom0] MM: initializing page allocator
[dom0] MM: initializing grant table
[dom0] MM: done
[dom0] Initialising timer interface
[dom0] Initialising scheduler
[dom0] Thread "Idle": pointer: 0xc004a00c, stack: 0xc004c000
[dom0] Thread "3": pointer: 0xc004a034, stack: 0xc004e000
[dom0] Thread "4": pointer: 0xc004a05c, stack: 0xc0050000
[dom0] Thread "5": pointer: 0xc004a084, stack: 0xc0052000
[dom0] Thread "6": pointer: 0xc004a0ac, stack: 0xc0054000
*** LOADING DOMAIN : 1 ***
[XEN] Physical Memory Arrangement: c2000000->c4000000
[XEN] VIRTUAL MEMORY ARRANGEMENT:
[XEN] Loaded kernel: c0008000->c00249f4
[XEN] Init. ramdisk: c0025000->c0025000
[XEN] Phys-Mach map: c0025000->c002d000
[XEN] Store mfn: c002d000->c002e000
[XEN] Console mfn: c002e000->c002f000
[XEN] Start info: c002f000->c0030000
[XEN] Page tables: c0030000->c0047000
[XEN] Boot stack: c0047000->c0048000
[XEN] TOTAL: c0000000->c2000000
[XEN] ENTRY ADDRESS: c0008000
[XEN] store_mfn physical addres c202d000
[XEN] console_mfn physical addres c202e000
[XEN] [TODO] dma channel access permission, in construct_guest_dom()
[XEN] [dom1] Bootstrapping
[dom1] Xen Minimal OS!
[dom1] Magic : xen-3.0-arm_32
[dom1] Total Pages allocated to this domain : 8192
[dom1] MACHINE address of shared info struct : 0xc00ed000
[dom1] VIRTUAL address of page directory : 0xc0030000
[dom1] Number of bootstrap p.t. frames : 23
[dom1] VIRTUAL address of page-frame list : 0xc0025000

Secure Xen on ARM User's Guide

Copyright © Samsung Electronics Co., Ltd. 2008 ８

[dom1] VIRTUAL address of pre-loaded module : 0x0
[dom1] Size (bytes) of pre-loaded modules : 0
[dom1] min mfn(min_page in xen) : 786432
[dom1] Command-Linux Address : 0xc002f054
[dom1] Command-Line String :
[dom1] flags : 0x0
[dom1] sizeo fo pte_t = 4
[dom1] Shared info Offset = 0x1
[dom1] Shared Info : 0xc000a000
[dom1] MM: Init
[dom1] MM: Initializing page allocator for memory c004a000(4a000)-c2000000(2000)
[dom1] MM: initializing page allocator
[dom1] MM: initializing grant table
[dom1] MM: done
[dom1] Initialising timer interface
[dom1] Initialising scheduler
[dom1] Thread "Idle": pointer: 0xc004b00c, stack: 0xc004c000
[dom1] Thread "3": pointer: 0xc004b034, stack: 0xc004e000
[dom1] Thread "4": pointer: 0xc004b05c, stack: 0xc0050000
[dom1] Thread "5": pointer: 0xc004b084, stack: 0xc0052000
[dom1] Thread "6": pointer: 0xc004b0ac, stack: 0xc0054000
[dom0] 3 Thread
[dom1] 3 Thread
[dom0] 4 Thread
[dom1] 4 Thread
[dom0] 5 Thread
[dom1] 5 Thread
[dom0] 6 Thread
[dom1] 6 Thread
[dom0] After 3 Thread
[dom1] After 3 Thread
[dom0] 3 Thread
[dom1] 3 Thread
[dom0] After 4 Thread
[dom1] After 4 Thread
[dom0] 4 Thread
[dom1] 4 Thread
[dom0] After 5 Thread
[dom1] After 5 Thread
[dom0] 5 Thread
[dom1] 5 Thread
[dom0] After 6 Thread
[dom1] After 6 Thread
[dom0] 6 Thread
[dom1] 6 Thread
[dom0] After 3 Thread
[dom1] After 3 Thread
[dom0] 3 Thread
[dom1] 3 Thread
[dom0] After 4 Thread
[dom1] After 4 Thread

…

Figure 3-4 Console after two mini-os booting

Secure Xen on ARM User's Guide

Copyright © Samsung Electronics Co., Ltd. 2008 ９

4. How to Enable Security Features

Secure Xen on ARM provides some kinds of security features. This chapter explains how users
can use them. Two jobs are required to enable security features. One is about boot loader,
and the other is about cryptographic library. Without this job, Secure Xen on ARM may not
operate properly.

4.1. Why modify boot loader for Secure Xen on ARM?

In order to use security features, Secure Xen on ARM should be based on security-chain (i.e.,
security-enabled boot loader � Secure Xen on ARM � security-enabled OS). In this release of
Secure Xen on ARM, however, you cannot use full security features we made because this
release does not include security-enabled boot loader and security-enabled OS. The core of
security-chain is composed of secure-boot and security-information-transfer from boot loader
to Secure Xen on ARM.

4.1.1. Secure boot

Security-enabled boot loader makes use of data located on the secure ROM (actually it
depends on a target platform feature) and other persistent memory like NOR or NAND flash
memory. The data needed for security-enabled boot loader include master key, certificate,
access control policies, binary images, their signatures and so on. To make security-enabled
boot loader run correctly, these data should be stored on a secure ROM and a persistent
memory.

The process of secure boot is as follows:
First of all, boot loader initializes security information for secure boot and checks integrity of
Secure Xen on ARM image. If the Secure Xen on ARM image is not changed, boot loader starts
it.
In addition, the Secure Xen on ARM receives the security information from boot loader and
checks integrity of OS images. If the OS images are not changed, Secure Xen on ARM runs
them.

4.1.2. Security information transfer

The security information described above is shared with a boot loader and Secure Xen on
ARM. So the security information must be transferred from the boot loader to Secure Xen on
ARM. To share the security information, the security-enabled boot loader calls the Secure
Xen on ARM image just as a function with a parameter and transfers the security information
through the parameter.

4.2. Detailed description about boot loader operation

4.2.1. Initialization

As we described above, the security information, which consist of master key, certificate,
access control policies, and binary images (VMM image, kernel images) & their signatures,
etc., are used for secure boot and other security mechanisms by boot loader and Secure Xen
on ARM. So the boot loader reads these information right after it runs. Generally, the master
key is loaded from a secure ROM, and others are loaded from a persistent memory, but it
depends on a target board.

Secure Xen on ARM User's Guide

Copyright © Samsung Electronics Co., Ltd. 2008 １０

4.2.2. To load Secure Xen on ARM and dom0 binary images to predefined
memory locations

Based on the security information, the boot loader knows the memory location to be loaded
Secure Xen on ARM and OS image. The boot loader loads Secure Xen on ARM and OS binary
image as well as other security information (e.g., access control policy, cryptographic keys,
etc) to predefined memory location.

4.2.3. To verify Secure Xen on ARM binary image

It is important that the boot loader checks integrity of the Secure Xen on ARM image with its
signature, because the Secure Xen on ARM modified by a malicious entity can be used to
attack the OSes on top of it. If the Secure Xen on ARM is altered, the boot loader stops its
execution and warns about this modification.

4.2.4. To call the Secure Xen on ARM binary image with a parameter

If the verification is successfully passed, the boot loader calls the Secure Xen on ARM binary
image as a function with a parameter, which is a pointer type of 'ssb_transfer_container_t'
structure defined in 'secure_storage_struct.h'. Followings are sample codes (see Sample code
4-1) for a security-enabled boot loader to start Secure Xen on ARM.

 /* XEN_ARM_POS predefined memory location for Secure Xen on ARM */
 /* SEC_INFO_POS memory location for security information structure */

 void (*start_xen_arm)(ssb_image_container_t *trans);
 ssb_transfer_container_t *ptc=NULL;

 start_xen_arm = (void(*)(ssb_image_container_t *)) XEN_ARM_POS;
 ptc = (ssb_transfer_container_t *) SEC_INFO_POS;
 /* Secure Xen on ARM start */
 (*start_xen_arm)(ptc);

Sample code 4-1

4.3. Data structure to be transferred from boot loader to Secure
Xen on ARM

In the 'secure_storage_struct.h' header file, you can see the detailed data structure to be
transferred from a boot loader to Secure Xen on ARM. As you can see from the sample codes
below, transferred structure is the 'ssb_transfer_container_t'. This structure contains
'transfer_struct_t' which has a binary image for each secure partition (see Sample code 4-2).

typedef enum {
 PART_MBB, PART_SP1=1, PART_SP2=2, PART_SP3=3, PART_OS_IMAGE=4,
 PART_DRV_RFS, PART_DOM0_RFS, PART_DOM1_RFS, PART_DOM2_RFS,
 TRANSFER_MASTER_KEY, PART_SUB_VMM_IMAGE,
 PART_END
} partition_type_t;

typedef struct {
 partition_type_t type;
 u_int32_t size;
 char *ptr;
} transfer_struct_t;

Secure Xen on ARM User's Guide

Copyright © Samsung Electronics Co., Ltd. 2008 １１

typedef struct {
 u_int32_t images_size;
 transfer_struct_t image[MAX_IMAGE_STRUCT_SIZE];

} ssb_transfer_container_t;

Sample code 4-2

If you would like to know more about transferred data structure and binary format, see the
following functions in the 'sra_func.c' and 'crypto.c' (see Sample code 4-3).

int sra_init(void);
int crypto_init(void);
int _load_part(ssb_transfer_container_t *tc, partition_type_t ptype);
int init_master_key(void);

Sample code 4-3

4.4. Description about cryptographic library

4.4.1. Overview

The 'crypto.c' file in the 'crypto' directory contains APIs for cryptographic functions and these
APIs are used for cryptographic operations such as key/algorithms initialization, hashing,
encryption, decryption, and digital signature (They are called by Secure Xen on ARM). If
there is cryptographic hardware support, you can connect these APIs to hardware
cryptographic engine. Otherwise, you can use open source cryptographic library such as
OpenSSL. In this release of Secure Xen on ARM, only cryptographic APIs are provided. So if
you want to use cryptographic APIs, you must get cryptographic library first and connect
those APIs to cryptographic functions.

4.4.2. APIs for cryptographic library

4.4.2.1. int init_master_key(void);

Description
 This function loads the master key to be used by cryptographic library.

This function must be called once before other cryptographic library is called.

Parameters
 None

Return Value
 0 if succeeds, otherwise error value

4.4.2.2. int crypto_init(void);

Description
This function selects cryptographic algorithm and gets the RSA public key or public key
certificate
This function must be called once before other cryptographic library is called.

Parameters
 None

Return Value
 0 if succeeds, otherwise error value

Secure Xen on ARM User's Guide

Copyright © Samsung Electronics Co., Ltd. 2008 １２

4.4.2.3. int crypto_sign_data(unsigned char* src, int src_len, unsigned char**
sig, int* sig_len);

Description
 This function generates a digital signature using RSA algorithm.

Parameters

Name Type Description

src unsigned char * Pointer to the source data

src_len int Byte length of source data

sig unsigned char** Pointer to the pointer to the digital signature. If *sig ==
NULL, newly allocated memory is returned. In the case,
memory must be freed by caller

sig_len int* Byte length of digital signature

Return Value
 0 if succeeds, otherwise error value

4.4.2.4. int crypto_verify_data(unsigned char* src, int src_len, unsigned
char* sig, int sig_len);

Description
 This function verifies image with digital signature using RSA algorithm.

Parameters

Name Type Description

src unsigned char * Pointer to the source data

src_len int Byte length of source data

sig unsigned char* Pointer to the digital signature.

sig_len int Byte length of digital signature

Return Value
 0 if succeeds, otherwise error value

4.4.2.5. int crypto_verify_data_with_certm(unsigned char* src, int src_len,
unsigned char* certm, int certm_len);

Description
 This function verifies image with manufacture’s certificate using RSA algorithm.

Parameters

Name Type Description

src unsigned char * Pointer to the source data

src_len int Byte length of source data

certm unsigned char* Pointer to manufacture’s certificate

certm_len int byte length of manufacture’s certificate

Return Value
 0 if succeeds, otherwise error value

Secure Xen on ARM User's Guide

Copyright © Samsung Electronics Co., Ltd. 2008 １３

4.4.2.6. int crypto_hash_data(unsigned char* src, int src_len, unsigned char**
hash, int* hash_len);

Description
 This function hashes image using SHA-1 algorithm

Parameters

Name Type Description

src unsigned char * Pointer to the source data

src_len int Byte length of source data

hash unsigned char** Pointer to the pointer to the hashed data. If *hash ==
NULL, newly allocated memory is returned. In the case,
memory must be freed by caller

hash_len Int * byte length of hashed data

Return Value
 0 if succeeds, otherwise error value

4.4.2.7. int crypto_encrypt_data(unsigned char *src, int src_len, unsigned
char **enc, int *enc_len);

Description
 This function encrypts data using AES algorithm

Parameters

Name Type Description

src unsigned char * Pointer to the source data

src_len int Byte length of source data

enc unsigned char** Pointer to the pointer to the encrypted data. If *enc ==
NULL, newly allocated memory is returned. In the case,
memory must be freed by caller

enc_len int* Byte length of encrypted data

Return Value
 0 if succeeds, otherwise error value

4.4.2.8. int crypto_decrypt_data(unsigned char *src, int src_len, unsigned
char **dec, int *dec_len);

Description
 This function decrypts data using AES algorithm

Parameters

Name Type Description

src unsigned char * Pointer to the source data

src_len int Byte length of source data

dec unsigned char** Pointer to the pointer to the decrypted data. If *dec ==
NULL, newly allocated memory is returned. In the case,
memory must be freed by caller

dec_len int* Byte length of decrypted data

Secure Xen on ARM User's Guide

Copyright © Samsung Electronics Co., Ltd. 2008 １４

Return Value
 0 if succeeds, otherwise error value

Secure Xen on ARM User's Guide

Copyright © Samsung Electronics Co., Ltd. 2008 １５

Appendix

A.1. New hypercalls for Secure Xen on ARM

Table 1 describes newly added hypercalls to Secure Xen on ARM.

Table 1New hypercalls for Secure Xen on ARM

Hypercall Name Description

__HYPERVISOR_restore_guest_context
Restore CPU context stored in guest kernel
stack.

__HYPERVISOR_do_print_profile Dispatch profiling data

__HYPERVISOR_do_set_foreground_domain Change foreground domain.

__HYPERVISOR_do_set_HID_irq

Register HID irq. The HID irq is only delivered to
foreground domain select by
__HYPERVISOR_do_set_foreground_domain
hypercall.

__HYPERVISOR_dma_op Request DMA operations

__HYPERVISOR_set_pirq_type Change IRQ type and attributes

__ HYPERVIOSR_do_acm_op
Override native Xen hypercall. User can choose
native or Secure Xen hypercall via menuconfig

__HYPERVISOR_sra_op Manage secure storage data

A.2. Credit

Sang-bum Suh (sbuk.suh@samsung.com)
Jooyoung Hwang (jooyoung.hwang@samsung.com)
Sungmin Lee (sung.min.lee@samsung.com)
Chanju Park (bestworld@samsung.com)
Sungkwan Heo (sk.heo@samsung.com)
Sangdok Mo (sd.mo@samsung.com)
Jaemin Ryu (jy0922.shim@samsung.com)
Bokdeuk Jung (bd.jeong@samsung.com)
Junghyun Yoo (yjhyun.yoo@samsung.com)
Minsung Jang (minsung.jang@samsung.com)
Joonyoung Shim (jy0922.shim@samsung.com)
Donghyuk Lee (dh5050.lee@samsung.com)
Inki Dae (inki.dae@samsung.com)
Yongho Hwang (yongh.hwang@samsung.com)

